If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3g^2+51g=0
a = 3; b = 51; c = 0;
Δ = b2-4ac
Δ = 512-4·3·0
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-51}{2*3}=\frac{-102}{6} =-17 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+51}{2*3}=\frac{0}{6} =0 $
| d•20=40 | | P=p+42 | | 3v+7(v+5)=-25 | | 8-8+8*1/8-8+8=y | | x^-6x^2+8x=0 | | 7y+4(y-4)=17 | | 8(×/2-5)=2x-6 | | 13x^2+2x=1 | | 5u+8(u+2)=29 | | 4x-14/5=-6=-6+5x+10/4 | | 2/3w-8=16 | | 7x-1+6=10 | | 180-x=x-72 | | 6+x=x+2 | | g/10=13 | | 13(2x)+20=6(5×+2) | | 5y+7=9-y | | -x/2+x/3=10/4 | | r-0.50=10.25 | | -x2+x/3=10/4 | | 9x+x/2=16 | | 15(2m+9)^2+14(2m+9)-8=0 | | x+7/x=10 | | x^2+8x+1=0 | | 3x+33=−6x+3 | | |3w=9|=12 | | 2(4x-12)3x=6x-1 | | x-1+x=-30 | | y+10+3y-40=180 | | 3.2x+4.4=5x+3.5 | | 1.2^x=2.8^x+4 | | 3.2x+4.4=5x+35 |